DNA walk of specific fused oncogenes exhibit distinct fractal geometric characteristics in nucleotide patterns
Abhijeet Das,
Manas Sehgal,
Ashwini Singh,
Rishabh Goyal,
Mallika Prabhakar,
Jeremy Fricke,
Isa Mambetsariev,
Prakash Kulkarni,
Mohit Kumar Jolly and
Ravi Salgia
Physica A: Statistical Mechanics and its Applications, 2025, vol. 662, issue C
Abstract:
Symmetry and symmetry-breaking in distinct biological cell features or components have been examined in cancer investigations. However, there can be possible limitations in directly interpreting the symmetry-based approach from a physical viewpoint due to the lack of understanding of physical laws governing symmetry in complex systems like cancer. To overcome this, herein, fractal geometry and DNA walk representation were employed to investigate the geometric features i.e., self-similarity and heterogeneity in DNA nucleotide coding sequences of wild-type and mutated oncogenes, tumour-suppressor, and other unclassified genes. The mutation-facilitated self-similar and heterogenous features were quantified by the fractal dimension and lacunarity measures, respectively. Additionally, the geometrical orderedness and disorderedness in the analyzed sequences were interpreted from the combination of the fractal measures. The findings showed distinct fractal features in the case of specific fusion mutations. They also highlight the possible interpretation of the fractal features as geometric analogues concerning explicit observations corresponding to specific cancer types. The two-dimensional multi-fractal analysis highlighted the prominence of mono-fractal scaling in the self-similarity of the analyzed sequences though asymmetric multi-fractal characteristics were vaguely observed. This study highlights the potential of integrating fractal geometry into cancer genomics to bridge the gap between molecular complexity and heterogeneity and translational cancer research.
Keywords: Cancer; Complexity; DNA walk; Fractal; Geometry; Mutation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125000895
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:662:y:2025:i:c:s0378437125000895
DOI: 10.1016/j.physa.2025.130437
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().