SocialTrans: Transformer based social intentions interaction for pedestrian trajectory prediction
Kai Chen,
Xiaodong Zhao,
Yujie Huang and
Guoyu Fang
Physica A: Statistical Mechanics and its Applications, 2025, vol. 663, issue C
Abstract:
The prediction of pedestrian trajectories plays a crucial role in practical traffic scenarios. However, current methodologies have shortcomings, such as overlooking pedestrians' perception of motion information from neighbor groups, employing simplistic and fixed social state interaction models, and lacking in final position correction. To address these issues, SocialTrans is proposed. It utilizes global observations to model the motion states of pedestrians and their neighbors, constructing separate state tensors to encapsulate social interaction information between them. This design includes a Subject Intention Extraction Module and a Neighbor Perception Intentions Extraction Module, which operate in parallel throughout the observation period to facilitate deep interaction of social states rather than simple end-to-end external fusion. Furthermore, a trajectory prediction optimizer is developed to correct final position predictions and simulate pedestrian motion diversity through trajectory clustering. Experimental validation is conducted on the ETH/UCY and SDD public datasets to evaluate the effectiveness of the proposed approach. The results demonstrate the method's capability to learn historical trajectory information, achieve high-precision predictions, and achieve state-of-the-art performance, particularly outperforming existing SOTA models on the SDD dataset. The algorithm will be made available at https://github.com/XiaodZhao/SocialTrans.
Keywords: Pedestrian trajectory prediction; Social state interaction; Intention extraction; Optimizer (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125000871
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:663:y:2025:i:c:s0378437125000871
DOI: 10.1016/j.physa.2025.130435
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().