Imprecise belief fusion improves multi-agent social learning
Zixuan Liu,
Jonathan Lawry and
Michael Crosscombe
Physica A: Statistical Mechanics and its Applications, 2025, vol. 664, issue C
Abstract:
In social learning, agents learn not only from direct evidence but also through interactions with their peers. We investigate the role of imprecision in such interactions and ask whether it can improve the effectiveness of the collective learning process. To that end we propose a model of social learning where beliefs are equivalent to formulas in a propositional language, and where agents learn from each other by combining their beliefs according to a fusion operator. The latter is parameterised so as to allow for different levels of imprecision, where a more imprecise fusion operator tends to generate a more imprecise fused belief when the two combined beliefs differ. In this context we describe both difference equation models and agent-based simulations of social learning under a variety of conditions and with different initial biases. The results presented suggest that for populations with a strong initial bias towards incorrect beliefs some level of imprecision in fusion can improve learning accuracy across a range of learning conditions. Furthermore, such benefits of imprecision are consistent with a stability analysis of the fixed points of the proposed difference equation models.
Keywords: Social learning; Collective decision-making; Propositional beliefs; Imprecise belief fusion (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125000767
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125000767
DOI: 10.1016/j.physa.2025.130424
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().