Optimal performance of irreversible quantum Stirling refrigerator with extreme relativistic particles as working substance
Yong Yin,
Xinting Fang,
Lingen Chen and
Yanlin Ge
Physica A: Statistical Mechanics and its Applications, 2025, vol. 664, issue C
Abstract:
In the context of finite-time thermodynamics (FTT), an irreversible quantum Stirling refrigerator (IQSR) model is constructed using extreme relativistic particles (ERP) confined within a one-dimensional infinite potential well (ODIPW) as the working medium. The cycle model is made up of two isothermal processes and two equal-L processes, where L is the width of the potential well, and the equal-L processes are treated as quantum isocapacitive processes. The occupation probability of the particles in an energy level follows the Gibbs distribution. Analytical formulas of coefficient of performance (COP, ε), cooling load (R) and Ω function are calculated. The curve of ε versus R rate is loop-shaped. The optimal performance interval, determined by cooling load and COP, can be divided into two distinct parts. One part is the optimization interval determined by the Ω function and COP optimization criteria. This interval takes the higher ε into accountwhen considering the cooling load. For instance, the maximum ε = 0.6743 is obtained when xmcop = 1.0371. The other part is the optimization interval determined by the optimization criteria of the Ω function and cooling load, which takes the higher R into account. The maximum R corresponds to R*max = 0.2918 and xmR = 1.1333. The analyses reveal that the Ω function plays a critical role in this optimization process by capturing the trade-off between COP and cooling load. The Ω function is designed to quantify the efficiency loss due to finite-time effects, thus providing a useful tool to optimize cycles in practical applications. For the quantum Stirling refrigerator, the maximum value of the Ω function (Ωmax = 0.2802) occurs when xmΩ = 1.1013 and R*mΩ = 0.2889.
Keywords: Finite-time thermodynamics; Quantum Stirling refrigeration cycle; Relativistic particles; Cooling load; COP; Ω function (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125001384
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125001384
DOI: 10.1016/j.physa.2025.130486
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().