Quantum Otto engines with curvature-dependent efficiency: An analog model approach
Somayeh Kourkinejat,
Ali Mahdifar and
Ehsan Amooghorban
Physica A: Statistical Mechanics and its Applications, 2025, vol. 669, issue C
Abstract:
In this paper, we explore a quantum Otto cycle with a quantum harmonic oscillator on a circle as its working substance. Since the eigenenergies of this oscillator depend on the curvature of the circle, this model, as an analog model, enables us to investigate the curvature effects of the physical space on properties of quantum heat engines. We consider two classical hot and cold thermal baths located in regions with different curvatures. By calculating the curvature-dependent work and heat in the Otto cycle, we emphasize the role of curvature in determining the thermal efficiency of the heat engine. Notably, we demonstrate that by adjusting the curvature difference between the bath locations, the engine’s efficiency can approach the Carnot limit.
Keywords: Spatial curvature; Quantum harmonic oscillator on a circle; Quantum otto cycle (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125002523
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002523
DOI: 10.1016/j.physa.2025.130600
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().