EconPapers    
Economics at your fingertips  
 

Weighted layer aggregation with fast and local label expanding method for community detection in multiplex networks

Pouya Shahgholi, Asgarali Bouyer, Bahman Arasteh and Xiaoyang Liu

Physica A: Statistical Mechanics and its Applications, 2025, vol. 670, issue C

Abstract: Community detection in multiplex networks has emerged as a crucial research area due to its ability to capture complex interactions across multiple layers of interconnected data. Despite significant advancements, existing methods often face critical challenges, including computational time, resolution limit, free parameter tuning, training models, etc. To overcome these limitations, this paper presents LCDMN (Layer-Coupled Diffusion for Multiplex Networks) algorithm designed for accurate and efficient community detection in multiplex networks. LCDMN employs dynamic scaling and layer coupling to adaptively identify community structures across diverse network configurations, offering improved resilience to network’s density and structural ambiguity. LCDMN addresses the challenges of layer diversity by: (1) dynamically weighting layers based on critical parameters such as layer correlation, layer nodes activity variance, and attractiveness, (2) developing a robust node scoring method, (3) the aggregating layers of multiplex network into a single-layer, weighted graph, (4) employing a label diffusion approach with mechanisms for handling overlapping nodes, and (5) refining community structures through a dynamic merging process that adaptively adjusts layer contributions and community boundaries during execution, ensuring context-sensitive resolution of structural ambiguity. Nodes and edges are scored using network topology and structural metrics to efficiently incorporate in label diffusion process for detecting initial communities. The approach balances computational efficiency with precision, enabling the detection of cohesive and well-defined communities in complex networks. Experimental evaluations on real-world and synthetic multiplex networks demonstrate that LCDMN consistently outperforms state-of-the-art methods, such as Infomap, MDLPA, MPBTV, LART, DGFM3 and GenLouvain, in terms of Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and modularity.

Keywords: Multiplex networks; Community detection; Layer aggregation; Label diffusion; Similarity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125002912
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:670:y:2025:i:c:s0378437125002912

DOI: 10.1016/j.physa.2025.130639

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:phsmap:v:670:y:2025:i:c:s0378437125002912