Pattern dynamics of a vegetation-water model with saturated effect and diffusion feedback
Huimin Bai,
Yu-Xuan Fan and
Li Li
Physica A: Statistical Mechanics and its Applications, 2025, vol. 673, issue C
Abstract:
Desertification represents one of the most pressing ecological challenges globally, where vegetation patterns serve as critical indicators of ecosystem resilience and early-warning signatures of ecological degradation. Soil water diffusive feedbacks and saturation water uptake by vegetation are important mechanisms for vegetation-water interactions in arid and semi-arid environments. In this paper, a Klausmeier-type vegetation-water model is investigated to study the mechanism of vegetation pattern formation by incorporating a saturated water absorption term and soil water diffusion feedback. We derive amplitude equations near the Turing bifurcation point, revealing selection criteria and stability conditions for vegetation patterns. Our findings reveal that the saturated water absorption effect induces pattern phase transitions, the feedback mechanism of soil water diffusion accelerates desertification, and precipitation gradients induce the emergence of a bistable coexistence phenomenon. These results provide theoretical insights into the dynamics of vegetation patterns and offer guidance for ecosystem management and desertification control.
Keywords: Vegetation patterns; Saturation water absorption effect; Soil water diffusion feedback; Bifurcation phenomena; Multi-scale analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125003280
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:673:y:2025:i:c:s0378437125003280
DOI: 10.1016/j.physa.2025.130676
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().