Random features Hopfield networks generalize retrieval to previously unseen examples
Silvio Kalaj,
Clarissa Lauditi,
Gabriele Perugini,
Carlo Lucibello,
Enrico M. Malatesta and
Matteo Negri
Physica A: Statistical Mechanics and its Applications, 2025, vol. 678, issue C
Abstract:
It has been recently shown that a feature-learning transition happens when a Hopfield Network stores examples generated as superpositions of random features, where new attractors corresponding to such features appear in the model. In this work we reveal that the network also develops attractors corresponding to previously unseen examples generated as mixtures from the same set of features. We explain this surprising behavior in terms of spurious states of the learned features: increasing the number of stored examples beyond the feature-learning transition, the model also learns to mix the features to represent both stored and previously unseen examples. We support this claim by computing the phase diagram of the model and matching the numerical results with the spinodal lines of mixed spurious states.
Keywords: Hopfield networks; Structured data; Replica method (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437125005989
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:678:y:2025:i:c:s0378437125005989
DOI: 10.1016/j.physa.2025.130946
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().