Hidden hamiltonians of first-order equations
L.J.F. Broer
Physica A: Statistical Mechanics and its Applications, 1975, vol. 79, issue 6, 583-596
Abstract:
There are equations, like the KDV equation, of which the solutions behave like conservative systems although the equation is of first order in time. It is shown how equations of this kind can originate by a direct-product like process of fusion of two canonical conjugate variables. Conversely, for a class of dynamically well-behaved first-order equations a splitting of the independent variable into two conjugate parts and a corresponding hamiltonian functional can be found. It is shown how the action principle and the Noether theorem transform during this fusion or splitting process. A number of examples are discussed. It is shown how a KDV approximation can be derived directly from the hamiltonian of a second-order system without using the second-order wave equations.
Date: 1975
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437175900084
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:79:y:1975:i:6:p:583-596
DOI: 10.1016/0378-4371(75)90008-4
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().