Vortices in He II, current algebras and quantum knots
M. Rasetti and
T. Regge
Physica A: Statistical Mechanics and its Applications, 1975, vol. 80, issue 3, 217-233
Abstract:
A canonical quantization scheme is developed for vertices in superfluid He II, using Dirac's technique for constrained hamiltonian systems. Quantization introduces in the theory in natural way the structure of the infinite Lie algebra of incompressible flows. We argue that all the topological invariants of the vortex, considered as a knot, can be regarded as observables of the system. Finally unitary representations of measure preserving flows on R3 and current algebra are discussed.
Date: 1975
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437175901053
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:80:y:1975:i:3:p:217-233
DOI: 10.1016/0378-4371(75)90105-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().