Microscopic theory of brownian motion
James T. Hynes,
Raymond Kapral and
Michael Weinberg
Physica A: Statistical Mechanics and its Applications, 1975, vol. 81, issue 4, 509-521
Abstract:
The nonlinear Fokker-Planck equation for the momentum distribution of a brownian particle of mass M in a bath of particles of mass m is derived. The contribution to this equation arising from initial deviation from bath equilibrium is analysed. This contribution is free of slow M-dependent decays and with certain restrictions leads to an effective shift in the initial value of the B particle momentum. The nonlinear Fokker-Planck equation for an initial bath equilibrium state is analyzed in terms of its predictions for momentum relaxation and mode coupling effects. It is found that in addition to nonlinear renormalization of the type previously found for the momentum correlation function, mode coupling leads to long-lived memory of the initial momentum state.
Date: 1975
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437175900722
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:81:y:1975:i:4:p:509-521
DOI: 10.1016/0378-4371(75)90072-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().