Scaling theory and finite systems
M.p Nightingale
Physica A: Statistical Mechanics and its Applications, 1975, vol. 83, issue 3, 561-572
Abstract:
A renormalization group transformation is introduced with the help of which critical properties of infinite systems can be related to finite systems. As a numerical example the method is applied to the two-dimensional Ising model. The critical point and critical point exponent are computed in addition to the amplitude of the logarithmic singularity in the specific heat.
Date: 1975
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437175900217
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:83:y:1975:i:3:p:561-572
DOI: 10.1016/0378-4371(75)90021-7
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().