Remarks concerning the derivation and the expansion of the master equation
M. Razavy
Physica A: Statistical Mechanics and its Applications, 1976, vol. 84, issue 3, 591-602
Abstract:
The present work consist of two parts: In the first part we apply the method of quasilinearization to the differential equation describing the time development of the quantum-mechanical probability density. In this way we derive the master equation without resorting to perturbation theory. In the second part of the paper, for a general form of the master equation which is an integro-differential equation, we test the accuracy of the Fokker-Planck approximation with the help of a solvable model. Then we study an alternative way of reducing the integro-differential equation to a partial differential equation. By expanding the transition probability W(q, q′), and the distribution function in terms of a complete set of functions, we show that for certain forms of W(q, q′), the master equation can be transformed exactly to partial differential equations of finite order.
Date: 1976
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437176901072
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:84:y:1976:i:3:p:591-602
DOI: 10.1016/0378-4371(76)90107-2
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().