EconPapers    
Economics at your fingertips  
 

Statistical mechanics of quasi-one-dimensional systems

H. Moraal

Physica A: Statistical Mechanics and its Applications, 1976, vol. 85, issue 3, 457-484

Abstract: A definition of a quasi-one-dimensional system as a generalized Cayley or Husimi tree with a nonzero surface to bulk ratio in the thermodynamic limit is given. Sufficient conditions for the existence of the thermodynamic limit of the free energy for such a system are derived and a thorough discussion of the thermodynamic limit properties of the one-particle distribution functions is given. These results are made more precise for the case of systems with Hamiltonians which are invariant under a special type of measure-preserving group of transformations, in particular for the d-dimensional rotation group. For this latter case, the phase transitions which can occur in quasi-one-dimensional systems upon application of small external fields are studied in some detail. A number of completely solved examples is given to illustrate the general theory. These include the classical Heisenberg model on a Cayley tree and generalizations thereof.

Date: 1976
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437176900200
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:85:y:1976:i:3:p:457-484

DOI: 10.1016/0378-4371(76)90020-0

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:85:y:1976:i:3:p:457-484