Composition dependence of the thermal conductivity of dense gas mixtures
E.A. Mason,
H.E. Khalifa,
J. Kestin,
R. DiPippo and
J.R. Dorfman
Physica A: Statistical Mechanics and its Applications, 1978, vol. 91, issue 3, 377-392
Abstract:
In this paper we present a method for predicting the composition dependence of the thermal conductivity of dense gas mixtures. The method requires the knowledge of the thermal conductivities of the pure component gases at high density, of the zero-density values of the thermal conductivities both of the pure components and of one binary mixture, and of the virial coefficients Bij and their derivatives dBijdT. The Thorne-Enskog hard-sphere theory, after a minor correction for consistency with the Onsager reciprocal relations, is then used as an interpolating formula between the end points. An extension of the method to mixtures of dense polyatomic gases is also provided. For these gases, the transport of internal energy is assumed to be entirely kinetic (diffusion mechanism).
Date: 1978
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437178901851
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:91:y:1978:i:3:p:377-392
DOI: 10.1016/0378-4371(78)90185-1
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().