Variational principles and Heisenberg matrix mechanics
Abraham Klein and
Ching-Teh Li
Physica A: Statistical Mechanics and its Applications, 1979, vol. 96, issue 1, 243-253
Abstract:
If in Heisenberg's equations of motion for a problem in quantum mechanics (or quantum field theory) one studies matrix elements in the energy representation and by use of completeness conditions expresses the equations solely in terms of matrix elements of the canonical variables, and if one does likewise with the associated kinematical constraints (commutation relations), one arrives at a formulation - largely unexplored hitherto - which can be exploited for both practical and theoretical development. In this contribution, the above theme is developed within the framework of one-dimensional problems. It is shown how this formulation, both dynamics and kinematics, can be derived from a new variational principle, indeed from an entire class of such principles. A powerful method of diagonalizing the Hamiltonian by means of computations utilizing these equations is described. The variational method is shown to be particularly useful for the study of the regime of large quantum numbers. The usual WKB approximation is seen to be contained as well as a basic for the study of systematic corrections to it. Further applications in progress are mentioned.
Date: 1979
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437179902115
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:96:y:1979:i:1:p:243-253
DOI: 10.1016/0378-4371(79)90211-5
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().