A self-consistent analysis for two-dimensional hydrodynamics
P. Gillis
Physica A: Statistical Mechanics and its Applications, 1979, vol. 98, issue 1, 261-273
Abstract:
We study a stochastic model for 2-d incompressible fluids. We show that the kinetic equation governing the evolution of the velocity correlation function has a remarkable property which suggests that a regime of time and wave number exists over which self-consistent transport modes are exponentially decaying. The characteristic time of this regime is shorter than the characteristic time of classical hydrodynamics: it is defined by the limit k → 0, t → ∞ and k2√In(1/k)t finite.
Date: 1979
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437179901778
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:98:y:1979:i:1:p:261-273
DOI: 10.1016/0378-4371(79)90177-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().