On linear dynamical equations of state for isotropic media II
V. Cianco and
G.A. Kluitenberg
Physica A: Statistical Mechanics and its Applications, 1979, vol. 99, issue 3, 592-600
Abstract:
In a previous paper we have investigated the relation (dynamical equation of state) among the hydrostatic pressure P, the volume v and the temperature T of an isotropic medium with an arbitrary number, say n, of scalar internal degress of freedom. It has been shown that linearization of the theory leads to a dynamical equation of state which has the form of a linear relation among P, v, T, the first n derivatives with respect to time of P and T and the first n+1 derivatives with respect to time of v. In this paper we give a more detailed investigation of the coefficients of P, v and T in the linear dynamical equation of state. Furthermore, we consider the case of media without volume viscosity. It is shown that for these media the derivative with respect to time of order n+1 of the volume does not occur in the dynamical equation of state. Finally, we pay special attention to media with one and with two scalar internal variables.
Date: 1979
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437179900748
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:99:y:1979:i:3:p:592-600
DOI: 10.1016/0378-4371(79)90074-8
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().