Contribution to reusability and modularity of manufacturing systems simulation models: Application to distributed control simulation within DFT context
H. El Haouzi,
A. Thomas and
J.F. Pétin
International Journal of Production Economics, 2008, vol. 112, issue 1, 48-61
Abstract:
Requirements for manufacturing control evolve from traditional centralised approaches where decision making is hierarchically broadcasted to more complex distributed control architectures involving autonomous entities and processes. Moreover, manufacturing processes are facing standardisation and globalisation such as promoted by the demand flow technology (DFT) concepts. In order to evaluate these new architectures, discrete-event simulation seems the most appropriate tool. However, complexity of distributed architectures and DFT standardisation requires introducing modularity and reusability in the modelling process. This paper deals with a methodological approach, based on ASDI (analysis-specification-design-implementation), to develop a library of generic simulation components that can be, as automatically as possible, instantiated into a modular simulation model. This approach is illustrated using an industrial case study where simulation aims at evaluating the impact of operator's flexibility induced by DFT context.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00126-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:112:y:2008:i:1:p:48-61
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().