Multi-objective job-shop scheduling with lot-splitting production
Rong-Hwa Huang
International Journal of Production Economics, 2010, vol. 124, issue 1, 206-213
Abstract:
While focusing on lot splitting in the job-shop scheduling problem, this study attempts to minimize the weighted total of stock, machine idle and carrying costs. Stock cost is determined using processing time. Machine idle cost is estimated using machine idle time. Carrying cost is calculated using the carry number of lot splitting. Results of this study demonstrate that stock cost and machine idle cost are inversely related to the number of lots split and have marginal decreasing result of benefit. The benefit of processing time is not as apparent as that of count and increase in turn. Carrying cost is positively related to the number of lots split. The minimum weighted total cost of stock, machine idle and carrying costs typically appears when the number of lots split is 2 or 3. The ant colony optimization (ACO) algorithm is used to solve the job-shop scheduling problem. Compared with the solution obtained by LINGO, the ACO algorithm performs well in scheduling and uses less time to solve the problem.
Keywords: Ant; colony; optimization; Lot-splitting; Job-shop; scheduling (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00421-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:124:y:2010:i:1:p:206-213
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().