A hybrid artificial bee colony algorithm for the job shop scheduling problem
Rui Zhang,
Shiji Song and
Cheng Wu
International Journal of Production Economics, 2013, vol. 141, issue 1, 167-178
Abstract:
The job shop scheduling problem (JSSP) has attracted much attention in the field of both information sciences and operations research. In terms of the objective function, most existing research has been focused on the makespan criterion (i.e., minimizing the overall completion time). However, for contemporary manufacturing firms, the due date related performance is usually more important because it is crucial for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a novel artificial bee colony (ABC) algorithm is proposed for solving the problem. A neighborhood property of the problem is discovered, and then a tree search algorithm is devised to enhance the exploitation capability of ABC. According to extensive computational tests, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness criterion.
Keywords: Job shop scheduling problem; Artificial bee colony algorithm; Tree search; Neighborhood property (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527312001430
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:141:y:2013:i:1:p:167-178
DOI: 10.1016/j.ijpe.2012.03.035
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().