Robust material handling system design with standard deviation, variance and downside risk as risk measures
Pratik Mital,
Marc Goetschalckx and
Edward Huang
International Journal of Production Economics, 2015, vol. 170, issue PC, 815-824
Abstract:
The design and planning of major storage systems belong to the class of systems design problems under uncertainty. The overall structure of the system is determined during the design stage while the values of the future conditions and the future planning decisions are not known with certainty. Typically the future uncertainty is modeled through a number of scenarios and each scenario has an individual time-discounted total system cost. The overall performance of the material handling system (MHS) is characterized by the distribution of these scenario costs. The central tendency of the cost distribution is always computed as the expected value of the distribution. Several alternatives for the dispersion of the distribution can be used. In this study the standard deviation, variance, and the downside risk of the cost distribution are investigated as the risk measures of the system. We propose an algorithm to efficiently identify all configurations of the MHS that are Pareto-optimal with respect to the tradeoff between the expected value of the costs and the risk; such Pareto-optimal configurations are also called efficient. Although the MHS model has non-linear constraints, our proposed algorithm can solve such non-linear models taking into account both the expected costs and the risk. The final selection of the storage system for implementation can then be made based on the Pareto graph and other considerations such as the risk preferences of the system owner. The algorithms developed are illustrated through a case study which helps in developing business insights for the warehouse and MHS design planners and decision makers.
Keywords: Material handling system (MHS); Warehouse; Design; Optimization; Uncertainty; Risk (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527315000377
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:170:y:2015:i:pc:p:815-824
DOI: 10.1016/j.ijpe.2015.02.003
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().