Predicting hospital admissions to reduce emergency department boarding
Davood Golmohammadi
International Journal of Production Economics, 2016, vol. 182, issue C, 535-544
Abstract:
Recent research has established that Emergency Department (ED) congestion is often caused by the inability to transition patients into inpatient units within the hospital in a timely fashion. This problem, in which the ED boards inpatients, is common across the U.S. Predicting ED patient admission using demographic and clinical information with only a few admission predictor factors investigated so far. We have developed a prediction model that can be used as a decision support tool and help reduce ED boarding. Using secondary data from the ED of a local hospital, we have examined the importance of eight demographic and clinical determinant factors of ED patients' admission to the hospital. We have employed Logistic Regression (LR) and Neural Network (NN) modeling techniques and based on our statistical analysis, we have identified encounter reason, age, and radiology exam type as the most significant factors. We have studied patterns between input variables (i.e. age) and output variables (i.e. admitted or not) and have developed a set of rules of thumb for predicting admissions. These unique rules can be used without any modeling or further investigation during operations, therefore providing important information regarding the ultimate status of a patient after ED operations without any time or cost. The study proves that an admission prediction model based on demographic and clinical determinant factors can accurately estimate the likelihood of patient admission, thus decreasing ED boarding and congestion, both significant problems in hospital operations.
Keywords: Emergency operations; Admission; Prediction model; Regression; Neural networks (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527316302523
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:182:y:2016:i:c:p:535-544
DOI: 10.1016/j.ijpe.2016.09.020
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().