EconPapers    
Economics at your fingertips  
 

The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism

Samuel Fosso Wamba (), Rameshwar Dubey, Angappa Gunasekaran and Shahriar Akter

International Journal of Production Economics, 2020, vol. 222, issue C

Abstract: The importance of big data analytics–enabled dynamic capability has been at the forefront of research for information systems management, operations management, and strategic management community. Prior studies have reported on the influence of big data analytics–enabled dynamic capability (BDA) for improved organizational agility and organizational performance, but there has been a paucity of literature regarding the role of big data analytics–enabled dynamic capability in untangling the supply chain ambidexterity dilemma and organizational performance. To address these research gaps, this paper draws on the dynamic capability view of the organization under the contingent effect of environmental dynamism. We tested our research hypotheses using 281 surveys, gathered using a pre-tested questionnaire. Our results suggest that BDA has positive effects on improving supply chain agility (SCAG), supply chain adaptability (SCAD) and performance measures (cost performance and operational performance). However, we noted that hypotheses regarding the moderating effect of environmental dynamism (ED) on the paths joining BDA and SCAG/SCAD were not supported. To address these unexpected results, we conducted post hoc analysis to explain the rationale behind the insignificant moderating effects of ED on the paths joining BDA and SCAG/SCAD. We found that the effects of BDA on SCAG/SCAD were higher under intermediate levels of environmental dynamism but comparatively weak when the environmental dynamism is low or high. Hence, we can argue that big data analytics can help enhance supply chain agility, supply chain adaptability, and organizational performance, but these effects are contingent upon the level of environmental dynamism. Moreover, a non-linear, inverse U-shaped moderating effect of environmental dynamism exists. Collectively, these findings provide a theory-based understanding of the organizational level of usage of big data analytics and its effects on supply chain agility, supply chain adaptability, and organizational performance. Moreover, they further shape our understanding of how big data analytics–enabled dynamic capabilities yield differential results under the moderating effect of environmental dynamism. Hence, we believe that our results will be useful for managers who are highly optimistic about the usage of these emerging technologies and their effects on supply chain characteristics. Finally, we have outlined our study limitations and offered numerous research directions.

Keywords: Big data analytics; Dynamic capability; Supply chain ambidexterity; Supply chain agility; Supply chain adaptability; Organizational performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (60)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527319303184
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:222:y:2020:i:c:s0925527319303184

DOI: 10.1016/j.ijpe.2019.09.019

Access Statistics for this article

International Journal of Production Economics is currently edited by Stefan Minner

More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:proeco:v:222:y:2020:i:c:s0925527319303184