Workforce production planning under uncertain learning rates
Rossana Cavagnini,
Mike Hewitt and
Francesca Maggioni
International Journal of Production Economics, 2020, vol. 225, issue C
Abstract:
In this paper, we consider a product manufacturer that seeks to leverage the potential of human learning to develop the capacity of its workforce and to reduce its costs. Unlike much of the literature in this area, we do not assume that the rate at which individuals learn is known with certainty. We present a two-stage stochastic programming model of the related production planning problem that quantifies the impact of worker assignment decisions to produce through an exponential learning curve which we linearize to yield a mixed integer linear program that can be solved efficiently. With this stochastic program, we perform a rigorously designed computational study and statistical analysis to derive tactics and managerial insights for how an organization should plan its production operations about assignment, cross-training and practicing. Results suggest that explicitly recognizing uncertainty in learning rates would reduce costs and that when dealing with assignment decisions, the leading factor to consider is the mean learning rate. On the other hand, when dealing with cross-training and practicing decisions, the learning rate variance is more predictive. We also assess the impact of explicitly considering stochastic forgetting rates in the productivity curve, finding that in the optimal assignment schedule, workers practice more and always specialize.
Keywords: Production planning; Stochastic programming; Stochastic learning and forgetting rates; Cross-training (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527319304281
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:225:y:2020:i:c:s0925527319304281
DOI: 10.1016/j.ijpe.2019.107590
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().