Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint
Zhen Chen and
Thomas W. Archibald
International Journal of Production Economics, 2024, vol. 270, issue C
Abstract:
This paper investigates a multi-period stochastic cash flow inventory problem with the aim of maximizing the long-term survival probability, which may be the objective of some retailers especially in periods of economic distress. Demand in each period is stochastic and can be non-stationary. In order to avoid too many lost sales under this objective, we introduce a joint chance constraint requiring the probability of no stockouts during the planning horizon to be higher than a specified service level. We develop a scenario-based model and a sample average approximation (SAA) model to solve the problem. A statistical upper bound on the survival probability based on SAA is provided and we discuss upper and lower bounds for the problem based on stochastic dynamic programming. We also propose a rolling horizon approach with service rate updating to test the out-of-sample performance of the two stochastic models and solve problems with long planning horizons. We test the two methods in large numerical tests and find that the rolling horizon approach together with the stochastic models can solve realistically sized problems in reasonable time.
Keywords: Inventory management; Cash flow; SAA; Joint chance constraint; Multi period (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0925527324000483
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:proeco:v:270:y:2024:i:c:s0925527324000483
DOI: 10.1016/j.ijpe.2024.109191
Access Statistics for this article
International Journal of Production Economics is currently edited by Stefan Minner
More articles in International Journal of Production Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().