Probabilistic inversion for chicken processing lines
Roger Cooke,
Maarten Nauta,
Arie H. Havelaar and
Ine van der Fels
Reliability Engineering and System Safety, 2006, vol. 91, issue 10, 1364-1372
Abstract:
We discuss an application of probabilistic inversion techniques to a model of campylobacter transmission in chicken processing lines. Such techniques are indicated when we wish to quantify a model which is new and perhaps unfamiliar to the expert community. In this case there are no measurements for estimating model parameters, and experts are typically unable to give a considered judgment. In such cases, experts are asked to quantify their uncertainty regarding variables which can be predicted by the model. The experts’ distributions (after combination) are then pulled back onto the parameter space of the model, a process termed “probabilistic inversion†. This study illustrates two such techniques, iterative proportional fitting (IPF) and PARmeter fitting for uncertain models (PARFUM). In addition, we illustrate how expert judgement on predicted observable quantities in combination with probabilistic inversion may be used for model validation and/or model criticism.
Keywords: Probabilistic inversion; IPF; PARFUM; Campylobacter; Transport models; Expert judgment; Entropy; Information (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832005002450
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:91:y:2006:i:10:p:1364-1372
DOI: 10.1016/j.ress.2005.11.054
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().