EconPapers    
Economics at your fingertips  
 

A model-based approach for optical performance assessment and optimization of a solar dish

Gang Xiao, Tianfeng Yang, Dong Ni, Kefa Cen and Mingjiang Ni

Renewable Energy, 2017, vol. 100, issue C, 103-113

Abstract: The solar dish is a point-focusing concentrator with a very high concentration ratio ranging from hundreds to thousands. Practical assessment and optimization methods are necessary to assemble solar dishes with satisfying concentration ratios and flux density distributions, which is very important for the overall solar thermal systems to achieve high efficiency. A solar dish usually consists of many mirror facets installed on a supporting structure with a dual-axis tracking system. Small mirror facets are easy to manufacture, but the alignment of many mirror facets is very challenging. A model-based approach for optical performance assessment and optimization of a solar dish was proposed, and flux density measurements were carried out to validate the approach. The simulation and experimental results showed very good consistency and suggested that the concentration ratio and the intercept factor could be increased from ∼500 to ∼1500 and 0.66 to 0.9 respectively after assembly optimization.

Keywords: Solar dish; Laser 3D scanning; Photogrammetry; Monte-Carlo ray-tracing; Flux density distribution; Optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116304864
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:100:y:2017:i:c:p:103-113

DOI: 10.1016/j.renene.2016.05.076

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:100:y:2017:i:c:p:103-113