Li-ion dynamics and state of charge estimation
Mingheng Li
Renewable Energy, 2017, vol. 100, issue C, 44-52
Abstract:
This paper focuses on real-time estimation of Li-ion State of Charge (SoC). A first-principles model validated by experimental data from literature is chosen to mimic a real Li-ion cell. Its impedance responses at different SoCs are studied by a simulated electrochemical impedance spectroscopy (EIS). An equivalent circuit model is developed for estimator design in which the parameters (including lumped series resistances R1, lumped interfacial resistances R2 and time constant τ) are derived from system identification and compared with the EIS results. The estimator is designed using extended Kalman filtering (EKF) and is implemented in the first-principles model. It is demonstrated by computer simulation that the SoC during charge/discharge cycles can be estimated with a relative error <3%. The accuracy of SoC tracking is improved if it is jointly estimated along with either R1 or R2 given that these model parameters vary with SoC as revealed by EIS.
Keywords: Li-ion; State of Charge; Electrochemical impedance spectroscopy; Extended Kalman filtering; Joint state and parameter estimation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116305213
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:100:y:2017:i:c:p:44-52
DOI: 10.1016/j.renene.2016.06.009
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().