The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag
Siyi Luo,
Jie Fu,
Yangmin Zhou and
Chuijie Yi
Renewable Energy, 2017, vol. 101, issue C, 1030-1036
Abstract:
The granulation for molten slag produces a large amount of sensible and recoverable heat. In this paper, a system was proposed to simultaneously produce glassy slag and reuse the heat for production of hydrogen-rich gas via biomass catalytic pyrolysis. A variety of parameters, including slag temperature, mass ratio of slag to biomass (S/B), particles size, and rotor speed, were evaluated for their effects on pyrolysis product yields and gas characteristics. The catalytic activity of blast-furnace (BF) slag for improving tar cracking was also addressed. The conditions of 1000 °C of slag temperature and 0.6 of S/B achieved a complete pyrolysis of biomass. When the S/B value increased to 0.8, a lower slag temperature (700 °C) can afford a complete pyrolysis of biomass. The maximum gas yield was gained at a rotor speed of 16 rpm/min, when slag particles in reactor showed a “cascading” movement. BF slag exhibited a catalytic activity in tar cracking and CnHm reforming during biomass pyrolysis process. Furthermore, decreasing the slag particle size favored to produce more light gases, and less char and condensate. However, the effect of slag particle size became not evident in the subsequent catalytic reforming process.
Keywords: Biomass; Catalytic pyrolysis; Waste heat; Molten slag (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811630862X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:101:y:2017:i:c:p:1030-1036
DOI: 10.1016/j.renene.2016.09.072
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().