An enhanced disk averaged CFD model for the simulation of horizontal axis tidal turbines
M. Edmunds,
A.J. Williams,
I. Masters and
T.N. Croft
Renewable Energy, 2017, vol. 101, issue C, 67-81
Abstract:
Simulating fully resolved Horizontal Axis Tidal Turbine (HATT) geometry for a time period great enough to resolve a fully developed wake, and accurately predict power and thrust characteristics, is computationally very expensive. The BEM-CFD method is an enhanced actuator disk and is able to reduce the computational cost by simulating a time averaged downstream velocity field. Current implementations fall short of accurately determining tip losses, which are a function of the hydrofoil geometry. This work proposes a method of addressing this shortfall by modifying the angle of attack to conform to the constraints outlined in Prandtl's lifting line theory, i.e. the zero lift angle of attack at the hydrofoil tip. The revised model is compared to existing BEM-CFD methods and validated against experimental data. The revised BEM-CFD method presented in this work shows a significant improvement over previous BEM-CFD methods when predicting power and thrust. The coefficient of power is reduced from 0.57 (approx. 30% above experiment) to 0.44 (approx. 3% above experiment). An increase in turbulence intensity in the rotor region, in particular at the wake boundary, improves the recovery of the wake without the addition of empirical turbulence source terms. Good correlation with experimental results for power, thrust and wake prediction, is observed. The model may also be applied to wind turbines.
Keywords: Finite volume; Fluid-structure interaction; Hydrodynamics; Incompressible flow; Marine hydrodynamics; Turbulent flow (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811630708X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:101:y:2017:i:c:p:67-81
DOI: 10.1016/j.renene.2016.08.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().