Front contact optimization of industrial scale CIGS solar cells for low solar concentration using 2D physical modeling
Jose-Maria Delgado-Sanchez,
Juan M. López-González,
Albert Orpella,
Emilio Sánchez-Cortezon,
María D. Alba,
Carmen López-López and
Ramón Alcubilla
Renewable Energy, 2017, vol. 101, issue C, 90-95
Abstract:
Cu(In,Ga)Se2 (CIGS) technology is one of the best absorber materials with record efficiencies among photovoltaic thin-film technologies (22.3% at lab scale and 16% at large commercial module). Although research on this material was originally motivated by low-cost, glass-glass applications focusing to fixed photovoltaic structures, the high efficiency values make CIGS an interesting alternative for low concentration systems. In this paper a 2D model for Cu(In,Ga)Se2 (CIGS) solar cells under low solar concentration is described and contrasted with experimental data. Using simulation, the effect of front electric contact design parameters: finger width, finger separation, and number of buses are analyzed for solar concentrations from 1 up to 10 suns. Efficiency maps allowing front contact grid optimization are shown and analyzed for each concentration factor (Cx), assessing the viability of CIGS solar cells for low concentration applications, where commercial CIGS solar cells may exhibit 35% of electrical power increases with proper front grid optimization under low concentration respect to conventional grid design.
Keywords: Concentrating solar power; Concentrator; Thin-film; Solar energy; Photovoltaic cells; Semiconductor device modeling (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116307479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:101:y:2017:i:c:p:90-95
DOI: 10.1016/j.renene.2016.08.046
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().