Modeling wind-turbine power curve: A data partitioning and mining approach
Tinghui Ouyang,
Andrew Kusiak and
Yusen He
Renewable Energy, 2017, vol. 102, issue PA, 1-8
Abstract:
Model of a power curve allows to analyze performance of a wind turbine and compare it with other turbines. An approach based on centers of data partitions and data mining is proposed to construct such a model. Wind speed range is partitioned into intervals for which centers are computed. The centers are regarded as representative samples in modeling. A support vector machine algorithm is used to build a power curve model. Computational results have demonstrated that the model reflects dynamic properties of a power curve. In addition it is accurate and efficient to generate. The model accuracy has been tested with industrial wind energy data.
Keywords: Wind turbine power curve; Partition centers; Data mining; Support vector machine (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116308989
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pa:p:1-8
DOI: 10.1016/j.renene.2016.10.032
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().