EconPapers    
Economics at your fingertips  
 

Modeling wind-turbine power curve: A data partitioning and mining approach

Tinghui Ouyang, Andrew Kusiak and Yusen He

Renewable Energy, 2017, vol. 102, issue PA, 1-8

Abstract: Model of a power curve allows to analyze performance of a wind turbine and compare it with other turbines. An approach based on centers of data partitions and data mining is proposed to construct such a model. Wind speed range is partitioned into intervals for which centers are computed. The centers are regarded as representative samples in modeling. A support vector machine algorithm is used to build a power curve model. Computational results have demonstrated that the model reflects dynamic properties of a power curve. In addition it is accurate and efficient to generate. The model accuracy has been tested with industrial wind energy data.

Keywords: Wind turbine power curve; Partition centers; Data mining; Support vector machine (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116308989
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pa:p:1-8

DOI: 10.1016/j.renene.2016.10.032

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:1-8