EconPapers    
Economics at your fingertips  
 

Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds

Enzo Marino, Alessandro Giusti and Lance Manuel

Renewable Energy, 2017, vol. 102, issue PA, 157-169

Abstract: The coupled hydro-aero-elastic response and fatigue loads of a bottom-supported offshore wind turbine under different wind conditions and for different wave modeling assumptions is the subject of this study. Nonlinear modeling of hydrodynamic forcing can bring about resonant vibrations of the tower leading to significant stress amplitude cycles. A comparison between linear and fully nonlinear wave models is presented, with consideration for different accompanying mean wind speeds and turbulence intensities. Hydrodynamic and aerodynamic loads acting on the support structure and on the rotor of a 5-MW wind turbine are modeled in a fully coupled hydro-aero-elastic solver. A key finding is that when the turbine is in a parked state, the widely used linear wave modeling approach significantly underestimates fatigue loads. On the other hand, when the wind turbine is in power production, aerodynamic loads are dominant and the effects due to consideration of nonlinear wave kinematics become less important.

Keywords: Offshore wind turbines; Fatigue loads; Nonlinear waves (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116308886
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pa:p:157-169

DOI: 10.1016/j.renene.2016.10.023

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:157-169