EconPapers    
Economics at your fingertips  
 

A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: A case study of wind farms in China

Qingli Dong, Yuhuan Sun and Li Peizhi ()

Renewable Energy, 2017, vol. 102, issue PA, 241-257

Abstract: As a crucial issue in the wind power industry, it is a tough and challenging task to predict the wind power accurately because of its nonlinearity, non-stationary and chaos. In this paper, we propose a novel hybrid model, which combines an integrated processing strategy and an optimized local linear fuzzy neural network, to forecast the wind power. First, discrete wavelet transform and singular spectrum analysis are used to filter out the noises and extract the trends from original wind power series, respectively. Then, the novel no-negative-constraint-combination theory together with the CS algorithm are adopted to integrate these two subseries obtained from the first step to retain strengths of each method. Based on the phase space reconstruction model, we could determine the most proper structure of the input sets and the output sets. Next, the local linear fuzzy neural network, with the initial rule consequent parameters optimized by the seeker optimization algorithm, is utilized to make wind power forecasts for a selected number of forward time steps. The numerical results from two experiments demonstrate that the proposed hybrid model is an effective approach to predict wind power, and the accuracy of prediction is highly improved compared with conventional forecasting models.

Keywords: Wind power; Processing strategy; Local linear fuzzy neural network; Forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116308965
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pa:p:241-257

DOI: 10.1016/j.renene.2016.10.030

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:102:y:2017:i:pa:p:241-257