Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells
A. Uma Devi,
A. Muthumeenal,
R.M. Sabarathinam and
A. Nagendran
Renewable Energy, 2017, vol. 102, issue PA, 258-265
Abstract:
Sulfonated poly (vinylidene fluoride-co-hexafluoropropylene) (SPVdF-co-HFP)/sulfonated poly (ether sulfone) (SPES) blend polymer electrolyte membranes (PEMs) were fabricated effectively as an alternative PEM for direct methanol fuel cell (DMFC) applications. In order to prepare PEMs with improved proton conductivity PVdF-co-HFP and PES were preferred and sulfonated using chlorosulfonic acid and sulfuric acid respectively. The presence of sulfonic acid groups were confirmed by FT-IR spectroscopy. TGA results showed that SPVdF-co-HFP/SPES blend membranes were superior than control one. Atomic force microscopy images of the blend PEMs clearly showed that the surface roughness and nodule size are increased. The influential characteristics of the PEMs, such as, water uptake, swelling ratio, ion-exchange capacity, proton conductivity, methanol crossover, selectivity ratio were characterized with respect to the control membrane. Though, the tensile strength and elongation at break slightly decreases by the addition of hydrophilic SPES, the water uptake and proton conductivity of SPVdF-co-HFP/SPES blend membranes were increased and found to be higher than that of the pure SPVdF-co-HFP. Selectivity ratio of the prepared blend PEMs were in the range of 1.709 × 104 to 2.193 × 104 S cm−3 s which is much higher than that of Nafion 117 (0.214 × 104 S cm−3s) membrane.
Keywords: SPVdF-co-HFP; SPES; Blends; PEM; Sulfonation; Proton conductivity (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116309375
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pa:p:258-265
DOI: 10.1016/j.renene.2016.10.060
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().