A unified high-resolution wind and solar dataset from a rapidly updating numerical weather prediction model
Eric P. James,
Stanley G. Benjamin and
Melinda Marquis
Renewable Energy, 2017, vol. 102, issue PB, 390-405
Abstract:
A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents an initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.
Keywords: Wind resource; Solar resource; NWP forecast; Unified wind/solar (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116309363
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pb:p:390-405
DOI: 10.1016/j.renene.2016.10.059
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().