EconPapers    
Economics at your fingertips  
 

Prediction of multi-wake problems using an improved Jensen wake model

Linlin Tian, Weijun Zhu, Wenzhong Shen, Yilei Song and Ning Zhao

Renewable Energy, 2017, vol. 102, issue PB, 457-469

Abstract: The improved analytical wake model named as 2D_k Jensen model (which was proposed to overcome some shortcomes in the classical Jensen wake model) is applied and validated in this work for wind turbine multi-wake predictions. Different from the original Jensen model, this newly developed 2D_k Jensen model uses a cosine shape instead of the top-hat shape for the velocity deficit in the wake, and the wake decay rate as a variable that is related to the ambient turbulence as well as the rotor generated turbulence. Coupled with four different multi-wake combination models, the 2D_k Jensen model is assessed through (1) simulating two wakes interaction under full wake and partial wake conditions and (2) predicting the power production in the Horns Rev wind farm for different wake sectors around two different wind directions. Through comparisons with field measurements, results from Large Eddy Simulations (LES) as well as results from other commercial codes, it is found that the predictions obtained with the 2D_k Jensen model exhibit good to excellent agreements with experimental and LES data.

Keywords: Wake model; Wind turbine wakes; Multiple wakes interaction; Power losses; Horns Rev wind farm (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116309429
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pb:p:457-469

DOI: 10.1016/j.renene.2016.10.065

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:457-469