EconPapers    
Economics at your fingertips  
 

Coarse-resolution numerical prediction of small wind turbine noise with validation against field measurements

Ping Ma, Fue-Sang Lien and Eugene Yee

Renewable Energy, 2017, vol. 102, issue PB, 502-515

Abstract: The noise emission and the power output from a small horizontal axis wind turbine is investigated using coarse-resolution computational fluid dynamics (CFD) simulations conducted with the commercial software STAR-CCM+®. The steady Reynolds-averaged Navier-Stokes (RANS) and transient delayed detached-eddy simulation (DDES) methodologies were used for the prediction of the flow field around the wind turbine. It is found that the DDES method with the Spalart-Allmaras turbulence model provides predictions of the wind turbine power that are in good conformance with available field measurements. The aeroacoustic calculations were performed using both the STAR-CCM+® acoustic model and an in-house code. The in-house code implemented both the permeable and impermeable formulations of the Ffowcs Williams and Hawkings (FW-H) equation. The predicted A-weighted sound pressure level (SPL) spectra, as well as the apparent SPL, obtained from the permeable formulation of the FW-H equation agree well with the wind turbine acoustic field measurements. It is found that the presence of the tower slightly decreases the wind turbine power output at all simulated incident wind speeds. It is also found that the presence of the tower leads to modifications of the SPL spectra at frequencies between about 300 and 1500 Hz.

Keywords: Wind turbine noise; Wind turbine power; Wind turbine field measurements; CFD simulation; FW-H equation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116309478
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:102:y:2017:i:pb:p:502-515

DOI: 10.1016/j.renene.2016.10.070

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:502-515