Optimal control of wave energy converters
Shangyan Zou,
Ossama Abdelkhalik,
Rush Robinett,
Giorgio Bacelli and
David Wilson
Renewable Energy, 2017, vol. 103, issue C, 217-225
Abstract:
Optimal control theory is applied to compute control for a single-degree-of-freedom heave wave energy converter. The goal is to maximize the energy extraction per cycle. Both constrained and unconstrained optimal control problems are presented. Both periodic and non-periodic excitation forces are considered. In contrast to prior work, it is shown that for this non-autonomous system, the optimal control, in general, includes both singular arc and bang-bang modes. Conditions that determine the switching times to/from the singular arc are derived. Simulation results show that the proposed optimal control solution matches the solution obtained using the complex conjugate control. A generic linear dynamic model is used in the simulations. The main advantage of the proposed control is that it finds the optimal control without the need for wave prediction; it only requires the knowledge of the excitation force and its derivatives at the current time.
Keywords: Wave energy conversion; Singular arc control; Optimal control; Bang-bang control (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310059
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:103:y:2017:i:c:p:217-225
DOI: 10.1016/j.renene.2016.11.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().