The challenge of integrating offshore wind power in the U.S. electric grid. Part II: Simulation of electricity market operations
H.P. Simão,
W.B. Powell,
C.L. Archer and
W. Kempton
Renewable Energy, 2017, vol. 103, issue C, 418-431
Abstract:
The purpose of this two-part study is to analyze large penetrations of offshore wind power into a large electric grid, using the case of the grid operated by PJM Interconnection in the northeastern U.S. Part I of the study introduces the wind forecast error model and Part II, this paper, describes Smart-ISO, a simulator of PJM's planning process for generator scheduling, including day-ahead and intermediate-term commitments to energy generators and real-time economic dispatch. Results show that, except in summer, an unconstrained transmission grid can meet the load at five build-out levels spanning 7–70 GW of capacity, with the addition of at most 1–8 GW of reserves.
Keywords: Unit commitment; Power flow; Economic dispatch; Uncertainty; PJM (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310333
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:103:y:2017:i:c:p:418-431
DOI: 10.1016/j.renene.2016.11.049
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().