Specialization improved nonlocal means to detect periodic impulse feature for generator bearing fault identification
Jinglong Chen,
Jun Pan,
Chunlin Zhang,
Xiaoyu Luo,
Zitong Zhou and
Biao Wang
Renewable Energy, 2017, vol. 103, issue C, 448-467
Abstract:
It is significant to perform damage identification of wind turbine using running condition data for guaranteeing its safe operation. Because acquired condition data is usually mixed with heavy background noise, feature enhancement and noise elimination method is necessary for this task. Nonlocal means algorithm increase the signal to noise ratio without destroying the original frequency spectrum structure, which can reserve the useful information farthest and meanwhile eliminate noise. And it seems to be a possible powerful tool along with demodulation technique (under constant speed condition) or order tracking analysis method (under variable speed condition) for the damage identification. However, the actual application cases show that it would obtain some not entirely satisfying results when face strong background noise situation. So, the specialization improved nonlocal means method is developed for the damage identification of generator bearing. Based on the analyzing the essence characteristic of mechanical vibration signal, more reasonable ideas on the algorithm design such as neighborhood selection and variation of weighting function during nonlocal means denoising for this task are proposed. The effectiveness of specialization improved nonlocal means method is verified by fault identification cases study including variable speed condition.
Keywords: Fault diagnosis; Generator bearing; Nonlocal means; Order tracking (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310382
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:103:y:2017:i:c:p:448-467
DOI: 10.1016/j.renene.2016.11.054
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().