A novel process for direct solvent regeneration via solar thermal energy for carbon capture
Rajab Khalilpour,
Dia Milani,
Abdul Qadir,
Matteo Chiesa and
Ali Abbas
Renewable Energy, 2017, vol. 104, issue C, 60-75
Abstract:
The energy for the solvent regeneration of post-combustion carbon capture (PCC) process is typically provided by steam bleeding from the power plant (PP) steam cycle. The energy penalty for steam bleeding results in serious reduction in the PP capacity estimated to be in the range of 10–40%. Power plant repowering or hybridization using solar-assisted PCC (SPCC) is a promising approach to satisfy carbon capture targets as well as PP load, concurrently. The drawback of this methodology is that notable amounts of solar energy are wasted during heat transfer from solar radiation to rich solvent.
Keywords: Post-combustion carbon capture; Solar thermal energy; Solvent regeneration; Solvent storage; Process systems; Repowering (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310485
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:104:y:2017:i:c:p:60-75
DOI: 10.1016/j.renene.2016.12.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().