Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst
Abhishek Guldhe,
Carla V.R. Moura,
Poonam Singh,
Ismail Rawat,
Edmilson M. Moura,
Yogesh Sharma and
Faizal Bux
Renewable Energy, 2017, vol. 105, issue C, 175-182
Abstract:
Heterogeneous solid acid catalyzed conversion of microalgal lipids to biodiesel is a scarcely studied area. In this study chromium-aluminum mixed oxide catalyst was investigated for catalytic conversion of microalgal lipids to biodiesel. Lipids from Scenedesmus obliquus grown in an open raceway pond (3000L) was used as feedstock. Reaction variables such as temperature, methanol to oil molar ratio and catalyst amount were optimized using response surface methodology. FAME conversion of 98.28% was achieved using chromium-aluminum catalyst at 80 °C, with methanol to oil molar ratio of 20:1 and catalyst amount of 15%. Catalytic efficiency of this heterogeneous solid acid catalyst was compared to a homogeneous acid catalyst (sulfuric acid). Chromium-aluminum mixed oxide catalyst can be effectively used for 4 batches of conversion reactions without significant loss in its activity.
Keywords: Heterogeneous catalyst; Microalgae; Chromium; Biodiesel; Transesterification (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116311107
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:105:y:2017:i:c:p:175-182
DOI: 10.1016/j.renene.2016.12.053
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().