Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach
T.E. Boukelia,
O. Arslan and
M.S. Mecibah
Renewable Energy, 2017, vol. 105, issue C, 324-333
Abstract:
One of the major challenges of developing and growing of parabolic trough solar thermal power plants (PTSTPPs) is enhancing the techno-economic performance. The goal of this study is to develop a unique artificial neural network (ANN) model that gives the best approach to predict the levelized cost of electricity (LCOE) of two different PTSTPPs integrated with thermal energy storage and fuel backup system; the first one is using thermic oil as primary heat transfer fluid in the solar field, while the other one is based on molten salt. By this way, the optimum designs of the two plants were determined in the LCOE analysis by using the obtained weights and biases of the best ANN topology. The techno-economic potentials of using molten salt in comparison to thermic oil of the two optimized plants were investigated considering both hourly and annual performances.
Keywords: Artificial neural network; Levelized cost of electricity; Molten salt; Parabolic trough solar thermal power plant; Thermic oil (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116311405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:105:y:2017:i:c:p:324-333
DOI: 10.1016/j.renene.2016.12.081
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().