Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology
Mohadese Babaki,
Maryam Yousefi,
Zohreh Habibi and
Mehdi Mohammadi
Renewable Energy, 2017, vol. 105, issue C, 465-472
Abstract:
Lipase from Rhizomucor miehei (RML) and lipase B from Candida antarctica (CALB) were covalently immobilized onto epoxy-functionalized silica. In this study, we developed a multi-enzyme system to produce biodiesel with waste cooking oil and methanol. To increase the biodiesel production yield, a mixture of 1,3-specific lipase (RML) and nonspecific lipase (CALB) was used. Response Surface Methodology (RSM) and a central composite rotatable design (CCRD) was used to study the effects of four factors, CALB:RML ratio, ratio of t-butanol to oil (wt.%), water adsorbent content (wt.%) and reaction time on the fatty acid methyl esters (FAME) yield. A quadratic polynomial equation was obtained for methanolysis reaction by multiple regression analysis. The optimum combinations for the reaction were CALB:RML ratio (3:1), t-butanol to oil (10 wt%), water adsorbent content (22.5 wt%) at the reaction time of 10 h. FAME yield of 91.5%, which was very close to the predicted value of 95.6%, was obtained. Verification experiment confirmed the validity of the predicted model.
Keywords: Biodiesel; Lipase; Immobilization; Waste cooking oil; Response surface methodology (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811631151X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:105:y:2017:i:c:p:465-472
DOI: 10.1016/j.renene.2016.12.086
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().