CFD study of Savonius wind turbine: 3D model validation and parametric analysis
G. Ferrari,
D. Federici,
P. Schito,
F. Inzoli and
R. Mereu
Renewable Energy, 2017, vol. 105, issue C, 722-734
Abstract:
A CFD study is conducted in order to characterize the dynamic behavior of a Savonius vertical axis wind turbine. All simulations are executed using the open source code, OpenFOAM. Both two-dimensional and full three-dimensional cases have been investigated in order to provide a suitable tool for geometrical optimization of this rotor. Unsteady simulations are carried out at different tip speed ratio (TSR), varying angular speed of rotor at constant wind speed, using different one and two-equation URANS turbulence models and selecting the k−ω SST for the final analysis. The two-dimensional model was compared with experimental data available in literature and obtained from tests in wind tunnel. This simplified model shows an over-estimation of experimental data, reporting a maximum efficiency at TSR 1, 20% higher than experimental value. The results of 3D model are in good agreement with experiments with a peak of 0.202 at TSR 0.8 for a rotor with aspect ratio 1.1. The influence of the rotor height has been evaluated on flow dynamics of the turbine and its power coefficient.
Keywords: Vertical axis wind turbine (VAWT); Savonius; CFD; Turbulence models; Aspect ratio; OpenFOAM (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116311375
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:105:y:2017:i:c:p:722-734
DOI: 10.1016/j.renene.2016.12.077
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().