Energy recovery from two-stage SWRO plant using PRO without external freshwater feed stream: Theoretical analysis
Khaled Touati,
Jacobo Salamanca,
Fernando Tadeo and
Hamza Elfil
Renewable Energy, 2017, vol. 105, issue C, 84-95
Abstract:
Research into pressure retarded osmosis (PRO) as a method to extract energy from salinity gradients is on the rise. Seawater Reverse Osmosis (SWRO) is now a leading technology in the desalination industry worldwide, in both small and large scale applications, due to the remarkable improvements in membrane performance and associated energy efficiency. Nonetheless, SWRO desalination is inherently more energy intensive when compared to conventional fresh water treatment. The integration of PRO with SWRO systems is studied in terms of energy consumption and effluent changes. For this, two novel integration designs are evaluated, with SWRO-PRO specific energy consumption being modeled using SWRO conditions at the thermodynamic restriction, and a developed PRO model. The results show lower SWRO energy consumption for both configurations, with a reduction in consumption of 12%–18%, depending on the RO recovery ratios. Lastly, the effect of the initial flow ratio on the dilution factor has been studied. To do so, the dilution was modeled and studied for different operating conditions. It was found that detrimental effects severely reduce the dilution, especially the internal concentration polarization, which induces a decrease of energy recovery when using the PRO process.
Keywords: Pressure retarded osmosis; Seawater reverse osmosis; Energy recovery; Modeling; Dilution factor (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148116310783
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:105:y:2017:i:c:p:84-95
DOI: 10.1016/j.renene.2016.12.030
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().