Analysing wind turbine fatigue load prediction: The impact of wind farm flow conditions
Luis Vera-Tudela and
Martin Kühn
Renewable Energy, 2017, vol. 107, issue C, 352-360
Abstract:
Lifetime evaluation with fatigue loads is commonly used in the design phase of wind turbines, but rarely during operation due to the cost of extra measurements. Fatigue load prediction with neural networks, using existing SCADA signals, is a potential cost-effective alternative to continuously monitor lifetime consumption. However, although assessments for turbines in wind farm flow have been pointed out as deficient, the evaluations were limited to single cases and the implication for the design of a monitoring system was not discussed. Hence, we proposed metrics to evaluate prediction quality and, using one year of measurements at two wind turbines, we evaluated predictions in six different flow conditions. The quality of fatigue load predictions were evaluated for bending moments of two blades, in edgewise and flapwise directions. Results, based on 48 analyses, demonstrated that prediction quality varies marginally with varying flow conditions. Predictions were accurate in all cases and had an average error below 1.5%, but their precision slightly deteriorated in wake flow conditions. In general, results demonstrated that a reasonable monitoring system can be based on a neural network model without the need to distinguish between inflow conditions.
Keywords: Wind turbine; Wake effects; Fatigue damage; Lifetime extension; Condition monitoring; Neural networks (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148117300757
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:107:y:2017:i:c:p:352-360
DOI: 10.1016/j.renene.2017.01.065
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().