EconPapers    
Economics at your fingertips  
 

Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst

Yingqun Ma, Qunhui Wang, Xiaohong Sun, Chuanfu Wu and Zhen Gao

Renewable Energy, 2017, vol. 107, issue C, 522-530

Abstract: In this study, biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst were investigated. Under optimised conditions of methanol/oil molar ratio of 10:1, catalyst content of 8%, reaction time of 90 °C and reaction time of 120 min, a high transesterification rate of about 92% was achieved. A comprehensive kinetic model was established for the transesterification reaction, the result illustrated that the transesterification of waste cooking oil and methanol catalysed by FeCl3-modified resin was confirmed for Rideal model, and the transesterification reaction was verified for the first order reaction controlled by the interfacial chemical reaction diffusion. The main physical–chemical properties of biodiesel met the ASTM D-6751 (American Society for Testing and Materials D-6751) standard. Compared with concentrated sulfuric acid catalyst, the eminent characteristics of reusability and operational stability made the resin catalyst more ascendant for biodiesel production. The results of present research showed that transesterification process catalysed by FeCl3-modified resin was an effective and low cost technology for biodiesel industry.

Keywords: Biodiesel; FeCl3-modified resin; Heterogeneous catalyst; Kinetic (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811730085X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:107:y:2017:i:c:p:522-530

DOI: 10.1016/j.renene.2017.02.007

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:107:y:2017:i:c:p:522-530